

1

Tutorial on CellML and OpenCOR 27
th

 May 2015 PJH

This tutorial shows you how to install and run the OpenCOR software, and to author and edit CellML
models1. We start by creating a simple model from scratch, saving it as a CellML file and running
model simulations. We next try opening existing CellML models, both from a local directory and
from the Physiome Model Repository. The various features of CellML2 and OpenCOR are then
explained in the context of increasingly complex biological models. A simple first order ODE model
and a nonlinear third order model are introduced. Ion channel gating models are used to introduce
the way that CellML handles units, components and connections. More sophisticated potassium and
sodium ion channel models are then described as models that can subsequently be imported into
the Hodgkin-Huxley 1952 squid axon neural model using the CellML model import facility.

Contents
 page

1. Installing and launching OpenCOR ... 1
2. Creating and running a simple CellML model: editing and simulation .. 2
3. Opening an existing CellML file ... 6
4. A simple first order ODE .. 7
5. A Lorentz attractor .. 8
6. A model of ion channel gating and current: Introducing CellML units 9
7. A model of the potassium channel: Introducing CellML components and connections 11
8. A model of the sodium channel: Introducing CellML encapsulation and interfaces 12
9. A model of the nerve action potential: Introducing CellML imports .. 18

1. Installing and launching OpenCOR

Download OpenCOR from www.opencor.ws. Versions are available for Windows, Mac and Linux.
Create a shortcut to the executable (found in the bin directory) on your desktop and click on this to
launch OpenCOR. A window will appear that looks like Figure 1(a).

 (a) (b)

Figure 1. (a) Default positioning of dockable windows. (b) An alternative configuration achieved by dragging
and dropping the dockable windows.

The central area is used to interact with files. By default, no files are open, hence the OpenCOR logo
is shown instead. To the sides, there are dockable windows, which provide additional features.
Those windows can be dragged and dropped to the top or bottom of the central area as shown in
Figure 1(b) or they can be individually undocked or closed. All closed panels can be re-displayed by
enabling them in the View menu, or by using the Tools menu Reset All option. Clicking on ‘CTRL’ &
‘spacebar’ on the Windows version, removes (for less clutter) or restores these two side panels.

1
 For an overview and the background of CellML see www.cellml.org.

2
 For details on the specifications of CellML1.0 see www.cellml.org/specifications/cellml_1.0.

http://www.opencor.ws/
http://www.cellml.org/
http://www.cellml.org/specifications/cellml_1.0

2

2. Creating and running a simple CellML model: editing and simulation

In this example we create a simple CellML model from scratch and run it. The model is the Van der
Pol oscillator3 defined by the second order equation

 ()

with initial conditions

 . The parameter controls the magnitude of the damping

term. To create a CellML model we convert this to two first order equations4 by defining the velocity

 as a new variable :

 ()

The initial conditions are now .

With the central pane in Editing mode (e.g. CellML Text View), under the File menu and New, click on
CellML 1.1 File then type in the following lines of code:

def model van_der_pol_model as
 def comp main as
 var t: dimensionless {init: 0};
 var x: dimensionless {init: -2};
 var y: dimensionless {init: 0};
 var mu: dimensionless {init: 1};

 ode(x,t)=y;
 ode(y,t)=mu*(1{dimensionless}-sqr(x))*y-x;
 enddef;
enddef;

Things to note5 are: (i) the closing semicolon at the end of each line (apart from the first two def
statements that are opening a CellML construct); (ii) the need to indicate dimensions for each
variable and constant (all dimensionless in this example – but more on dimensions later); (iii) the use
of ode(x,t) to indicate a first order6 ODE in x and t, and (iv) the use of the convenient squaring
function sqr(x) for .

A partial list of mathematical functions available for OpenCOR is:

 sqr(x) √ sqrt(x) ln(x) log(x) exp(x) pow(x,a)

 sin(x) cos(x) tan(x) csc(x) sec(x) cot(x)

 asin(x) acos(x) atan(x) acsc(x) asec(x) acot(x)

 sinh(x) cosh(x) tanh(x) csch(x) sech(x) coth(x)

 asinh(x) acosh(x) atanh(x) acsch(x) asech(x) acoth(x)

Table 1. The list of mathematical functions available for coding in OpenCOR.

Positioning the cursor over either of the ODEs renders the maths in standard form above the code as
shown in Figure 2(a).

3
 en.wikipedia.org/wiki/Van_der_Pol_oscillator

4
 Note that gray boxes are used to indicate equations that are implemented directly in OpenCOR.

5
 For more on the CellML Text view see opencor.ws/user/plugins/editing/CellMLTextView.html.

6
 Note that a more elaborated version of this is ‘ode(x, t, 1{dimensionless})’ and a 2

nd
 order ODE can be

specified as ‘ode(x, t, 2{dimensionless})’. 1
st

 order is assumed as the default.

http://en.wikipedia.org/wiki/Van_der_Pol_oscillator
http://opencor.ws/user/plugins/editing/CellMLTextView.html

3

Note that CellML is a declarative language (unlike say C, Fortran or Matlab, which are procedural
languages) and the order of statements therefore does not affect the solution. For example, the
order of the ODEs could equally well be

The significance of this will become apparent later when we import several CellML models to create
a composite model.

 (a) (b)

Figure 2. (a) Positioning the cursor over an equation (shown by the highlighted line) renders the
maths. (b) Once the model has been saved, the RH tabs provide different views of the CellML code.

Now save the code to a local folder using Save under the File menu (or ‘CTRL-S’) and choosing .cellml
as the file format7. With the CellML model saved various views, accessed via the tabs on the right
hand edge of the window, become available. One is the CellML Text view (the view used to enter the
code above); another is the Raw CellML view that displays the way the model is stored (note that
positioning the cursor over part of the code shows the maths in this view also); and another is the
Raw view.

With the equations and initial conditions defined, we are ready to run the model. To do this, click on
the Simulation tab on the left hand edge of the window. You will see three main areas - at the left
hand side of the window are the Simulation, Solvers, Graphs and Parameters panels, which are
explained below. At the right hand side is the graphical output window, and running along the
bottom of the window is a status area, where status messages are displayed.

Simulation panel
This area is used to set up the simulation settings.

 Starting point - the value of the variable of integration (often time) at which the simulation
will begin. Leave this at 0.

 Ending point - the point at which the simulation will end. Set to 100.
 Point interval - the interval between data points on the variable of integration. Set to 0.1.

Just above the Simulation panel are controls for running the simulation. These are:

Run (), Pause (), Reset parameters (), Clear simulation data (), Interval delay (),
Add()/Subtract() graphical output windows and Output solution to a CSV file ().

For this model, we suggest that you create three graphical output windows using the + button.

7
 Note that ‘.cellml’ is not strictly required but is best practice.

ode(y,t)=mu*(1{dimensionless}-sqr(x))*y-x;
ode(x,t)=y;

4

Solvers panel
This area is used to configure the solver that will run the simulation.

 Name - this is used to set the solver algorithm. It will be set by default to be the most
appropriate solver for the equations you are solving. OpenCOR will allow you to change this
to another solver appropriate to the type of equations you are solving if you choose to. For
example, CVODE for ODE (ordinary differential equation) problems, IDA for DAE (differential
algebraic equation) problems, KINSOL for NLA (non-linear algebraic) problems8.

 Other parameters for the chosen solver – e.g. Maximum step, Maximum number of steps,
and Tolerance settings for CVODE and IDA. For more information on the solver parameters,
please refer to the documentation for the particular solver.

Note: these can all be left at their default values for our simple demo problem9.

Graphs panel
This shows what parameters are being plotted once these have been defined in the Parameters
panel. These can be selected/deselected by clicking in the box next to a parameter.

Parameters panel
This panel lists all the model parameters, and allows you to select one or more to plot against the
variable of integration or another parameter in the graphical output windows. OpenCOR supports
graphing of any parameter against any other. All variables from the model are listed here, arranged
by the components in which they appear, and in alphabetical order. Parameters are displayed with
their variable name, their value, and their units. The icons alongside them have the following
meanings:

 Editable constant

 Computed constant

 Editable state

 Rate

 Algebraic

Right clicking on a parameter provides the options for displaying that parameter in the currently
selected graphical output window. With the cursor highlighting the top graphical output window (a
blue line appears next to it), select x then Plot Against Variable of Integration – in this case t - in
order to plot x(t).

Now move the cursor to the second graphical output window and select y then t to plot y(t).

Finally select the bottom graphical output window select y and select Plot Against then Main then x
to plot y(x).

Now Click on the Run control. You will see a progress bar running along the bottom of the status
window. Status messages about the successful simulation will be displayed. Use the interval delay
wheel to slow down the plotting. Figure 3 shows the results.

8
 Other solvers include forward Euler, Heun and Runga-Kutta solvers (RK2 and RK4).

9
 Note that a model that requires a stimulus protocol should have the maximum step value of the CVODE

solver set to the length of the stimulus.

5

Figure 3. Graphical output from OpenCOR. The top window is x(t), the middle is y(t) and the bottom is y(x).

To obtain numerical values for all variables (i.e. x(t) and y(t)), click on the CSV file button (). You
will be asked to enter a filename and type (use .csv). Opening this file (e.g. with Microsoft Excel)
provides access to the numerical values. Other output types (e.g. BiosignalML) will be available
shortly.

6

3. Opening an existing CellML file

Go to the File menu and select Open.... Browse to the folder that contains your existing models and
select one. Note that this brings up a new tabbed window and you can have any number of CellML
models open at the same time in order to quickly move between them. A model can be removed
from this list by clicking on next to the CellML model name.

You can also access models from the left hand panel in Figure 1(a). If this panel is not currently
visible, use ‘CTRL-spacebar’ to make it reappear. Models can then be accessed from any one of the
three subdivisions of this panel – File Browser, CellML Model Repository or File Organiser. For a file
under File Browser or File Organiser, either double-click it or ‘drag&drop’ it over the central
workspace to open that model. Clicking on a model in the CellML Model Repository (e.g. Chen, Popel,
2007) opens a new browser window with that model (see top of Figure 4 below). In the right hand
corner you will see a reference to the workspace. Clicking on the link (i.e. ‘Chen, Popel, 2007’) opens
the middle figure below. To open this CellML model in OpenCOR, copy the URI into the text box that
appears under Open Remote… in the File menu in OpenCOR.

Figure 4. Browser windows (top and middle) opened from within OpenCOR and showing a model in the CellML
model repository. The red arrow points to the URI for that model. Copying this and inserting it into the text
box that appears under Open Remote… in the File menu (bottom), opens the model in OpenCOR.

Obtain URI

Enter URI

7

4. A simple first order ODE

The simplest example of a first order ODE is

with the solution

 ()

 . ()

/ ,

where (), the value of () at , is the initial condition and as , (|) ()

(see Figure 5). Note that

 is called the time constant of the exponential decay, and that

 ()

 . ()

/ .

At , () has therefore fallen to

 (or about 37%) of the difference between the initial (())

and final steady state (()) values.

Choosing parameters and () , the CellML text for this model is

def model first_order_model as
 def comp main as
 var t: dimensionless {init: 0};
 var y: dimensionless {init: 5};
 var a: dimensionless {init: 1};
 var b: dimensionless {init: 2};

 ode(y,t)=-a*y+b;
 enddef;
enddef;

The solution by OpenCOR is shown in Figure 6(a) for these parameters and in Figure 6(b) for
parameters and () . Note the simulation panel with Ending point=10, Point
interval=0.1)

 (a) (b)

Figure 6. OpenCOR output () for the simple ODE model with parameters (a) and () ,
and (b) and () . The red arrow indicates the point at which the trace reaches the time

constant (or ≈37% of the difference between the initial and final solution values). Note that the

parameters on the left have been reset to their initial values for this figure – normally they would be at their
final solution values.

These two solutions have the same exponential time constant (

) but different initial and

final (steady state) values.

𝝉 𝟏

𝝉 𝟏

exponential
decay

Figure 5.Solution of 1
st

 order equation.
 𝑡

𝑦(𝑡)

𝑏

𝑎

𝑦()

8

5. A Lorenz attractor

An example of a third order ODE system (i.e. three 1st order equations) is the Lorenz attractor10.

This has three equations:

 ()

 ()

where and are parameters.

The CellML text code entered for
these equations is shown in Figure 7
with parameters

 , , = 2.66667

and initial conditions

 () () () 1.

Solutions for (), () and (), corresponding to the time integration parameters shown on the
LHS, are shown in Figure 8. Note that this is an example of a ‘chaotic’ system of equations because
small changes in the initial conditions lead to quite different solution paths.

 Figure 8. Solutions of the Lorenz equations. Note that the parameters on the left have been reset to
their initial values for this figure – normally they would be at their final solution values.

This example illustrates the value of OpenCOR’s ability to plot solution variables as they are
computed. Use the ‘simulation delay’ wheel to slow down the plotting by a factor of about 5000 – in
order to follow the solution trajectory as it spirals in ever widening trajectories around the left hand
‘attractor’ before reaching a bifurcation point that sends it off to the right hand attractor.

10

 http://en.wikipedia.org/wiki/Lorenz_system; https://www.math.auckland.ac.nz/~hinke/crochet/

𝒙(𝒕)

𝒚(𝒙)

𝒛(𝒙)

Figure 7. CellML Text View code for the Lorentz equations.

http://en.wikipedia.org/wiki/Lorenz_system
https://www.math.auckland.ac.nz/~hinke/crochet/

9

 (a) (b)
Figure 10. Transient behaviour for one
gate (left) and 𝛾 gates in series (right).

1

𝑡

𝑦

𝑡

𝑦𝛾

0

6. A model of ion channel gating and current: Introducing CellML units

A good example of a model based on a first order equation is the one used by Hodgkin and Huxley
[8] to describe the gating behaviour of an ion channel (see also next three sections). To describe the
time dependent transition between the closed and open states of the channel, Hodgkin and Huxley
introduced the idea of channel gates that control the passage of ions through a membrane ion
channel. If the fraction of gates that are open is y, the
fraction of gates that are closed is 1-y, and a first order ODE
can be used to describe the transition between the two
states (see Figure 9):

 ()

where is the opening rate and is the closing rate.

The solution to this ODE is

 ()

The constant can be interpreted as ()

 as in

the previous example and, with () (i.e. all gates initially
shut), the solution looks like Figure 10(a).

The experimental data obtained by Hodgkin and Huxley for the squid axon, however, indicated that
the initial current flow began more slowly (Figure 10(b)) and they modelled this by assuming that the
ion channel had gates in series so that conduction would only occur when all gates were at least
partially open. Since is the probability of a gate being open, is the probability of all gates
being open (since they are assumed to be independent) and the current through the channel is

 ̅
 ̅ ()

where ̅ ̅ (), the steady state current through the open

gate, is governed by Ohm’s law. i.e. the current is equal to the
channel conductance ̅ times the driving potential, which in this

case is the difference between the membrane potential
(referenced to the external potential) and the Nernst equilibrium
potential for that ion, (see Figure 11).

We can represent this in OpenCOR with a simple extension of the 1st order ODE model, but in
developing this model we will also demonstrate the way in which CellML deals with units.

There are seven base physical quantities defined by the Système International d’Unités (SI)11. These
are (with their SI units): length (meter or m), time (second or s), amount of substance (mole),
temperature (K), mass (kilogram or kg), current (amp or A) and luminous intensity (candela). All
other units are derived from these seven. Additional derived units that CellML defines intrinsically
are: Hz (s−1); Newton, N (kg⋅m⋅s−2); Joule, J (N.m); Pascal, Pa (N.m-2); Watt, W (J.s−1); Volt, V (W.A−1);
Siemen, S (A.V−1); Ohm, (V.A−1); Coulomb, C (s.A); Farad, F (C.V−1); Weber, Wb (V.s); Henry, H
(Wb.A−1). Multiples and fractions of these are defined as follows:

Multiples

Prefix deca hecto kilo mega giga tera peta exa zetta yotta

Symbol da h k M G T P E Z Y

Factor 10
0
 10

1
 10

2
 10

3
 10

6
 10

9
 10

12
 10

15
 10

18
 10

21
 10

24

Fractions

Prefix deci centi milli micro nano pico femto atto zepto yocto

Symbol d c m μ n p f a z y

Factor 10
0
 10

−1
 10

−2
 10

−3
 10

−6
 10

−9
 10

−12
 10

−15
 10

−18
 10

−21
 10

−24

11

 http://en.wikipedia.org/wiki/International_System_of_Units

𝛼𝑦

Figure 9. Ion channel gating kinetics. 𝑦
is the fraction of gates in the open state.
𝛼𝑦 and 𝛽𝑦 are the rate constants for

opening and closing, respectively.

𝛽𝑦
𝑦

 𝑦

𝒊𝒚̅

𝑬𝑦
𝑽

𝒊𝒚̅ 𝑔 𝑦(𝑽 𝑬𝑦)

Figure 11. Open channel linear
current-voltage relation.

http://en.wikipedia.org/wiki/International_System_of_Units

10

Units for this model, with multiples and fractions, are illustrated in the following CellML text code:

 def model first_order_model as
 def unit millisec as
 unit second {pref: milli};
 enddef;

 def unit per_millisec as
 unit second {pref: milli, expo: -1};
 enddef;

 def unit millivolt as
 unit volt {pref: milli};
 enddef;

 def unit microA_per_cm2 as
 unit ampere {pref: micro};
 unit metre {pref: centi, expo: -2};
 enddef;

 def unit milliS_per_cm2 as
 unit siemens {pref: milli};
 unit metre {pref: centi, expo: -2};
 enddef;

 def comp ion_channel as
 var V: millivolt {init: 0};
 var t: millisec {init: 0};
 var y: dimensionless {init: 0};
 var E_y: millivolt {init: -85};
 var i_y: microA_per_cm2;
 var g_y: milliS_per_cm2 {init: 36};
 var gamma: dimensionless {init: 4};
 var alpha_y: per_millisec {init: 1};
 var beta_y: per_millisec {init: 2};

 ode(y, t) = alpha_y*(1{dimensionless}-y)-beta_y*y;

 i_y = g_y*pow(y, gamma)*(V-E_y);
 enddef;
 enddef;

The solution of these equations for the parameters indicated above is illustrated in Figure 12.

Figure 12. The behaviour of an ion channel with gates transitioning from the closed to the open state at
a membrane voltage . The opening and closing rate constants are ms

-1
 and ms

-1
. The ion

channel has an open conductance of ̅ mS.cm
-2

 and an equilibrium potential of mV. The

upper transient is the response () for each gate and the lower trace is the current through the channel.

Define units and initial conditions for variables

Define units for time as millisecs

Define per_millisec units

Define units for voltage as millivolts

Define units for current as microAmps per cm
2

Define units for conductance as milliSiemens per cm
2

Define ODE for gating variable y
Define channel current

11

7. A model of the potassium channel: Introducing CellML components and connections

We now deal specifically with the application of the previous model to the Hodgkin and Huxley (HH)
potassium channel. Following the convention introduced by Hodgkin and Huxley, the gating variable
for the potassium channel is and the number of gates in series is , therefore

 ̅
 ̅ ()

where ̅ 36 mS.cm-2, and with intra- and extra-cellular concentrations , - = 90mM and , - =
3mM, respectively, the Nernst potential for the potassium channel is

, -
, -

 .

Note that this is called the equilibrium potential since it is the potential across the cell membrane
when the channel is open but no current is flowing because the electrostatic driving force from the
potential (voltage) difference between internal and external ion charges is exactly matched by the
osmotic driving force from the ion concentration difference. ̅ is the channel conductance.

The gating kinetics are described (as before) by

 ()

with time constant

.

The main difference from the gating model in our previous
example is that Hodgkin and Huxley found it necessary to
make the rate constants functions of the membrane
potential (see Figure 13) as follows12:

 ()

 ()

;
 ()

 .

Note that under steady state conditions when and

 , |

 .

These equations are captured with OpenCOR CellML text (together with the previous unit
definitions) on the next page. But first we need to explain some further CellML concepts.

We introduced CellML units above. We now need to
introduce two more CellML constructs: components and
connections (mappings between components). For
completeness we also show two other constructs in Figure
14 that will be used later: imports and groups.13

Defining components serves two purposes: it preserves a
modular structure for CellML models, and allows these
component modules to be imported into other models, as
we will illustrate later. For the potassium channel model
we define components representing (i) the environment,
(ii) the potassium channel conductivity, and (iii) the
dynamics of the n-gate.

Since certain variables (t, V and n) are shared between
components, we need to also define the component maps
as indicated in the CellML text view on the next page.

12

 The original expression in the HH paper used
 ()

()

 and

 , where is defined

relative to the resting potential (-75mV) with +ve corresponding to +ve inward current and ().
13

 See also [1,2].

CellML

model

component

variable

math

group

relationshipRef

componentRef

imported units

imported component

import

units

unit

connection

mapComponent

mapVariable

Figure 14. Key entities in a CellML model.

1
𝛼𝑛 𝛽𝑛

𝑉

Figure 13. Voltage dependence of rate

constants 𝛼𝑛 and 𝛽𝑛 and time constant 𝜏𝑛

𝜏𝑛

12

The CellML text code for the potassium ion channel model is as follows14:

def model potassium_ion_channel as

 def unit millisec as
 unit second {pref: milli};
 enddef;

 def unit per_millisec as
 unit second {pref: milli, expo: -1};
 enddef;

 def unit millivolt as
 unit volt {pref: milli};
 enddef;

 def unit microA_per_cm2 as
 unit ampere {pref: micro};
 unit metre {pref: centi, expo: -2};
 enddef;

 def unit milliS_per_cm2 as
 unit siemens {pref: milli};
 unit metre {pref: centi, expo: -2};
 enddef;

 def comp environment as
 var V: millivolt {init: -85, pub: out};
 var t: millisec {pub: out};
 V = sel
 case (t > 5 {millisec}) and (t < 15 {millisec}):
 -20.0 {millivolt};
 otherwise:
 -85.0 {millivolt};
 endsel;
 enddef;

 def comp potassium_channel as
 var V: millivolt {pub: in};
 var n: dimensionless {pub: in};
 var i_K: microA_per_cm2 {pub: out};
 var g_K: milliS_per_cm2 {init: 36};
 var E_K: millivolt {init: 36};

 i_K = g_K*pow(n, 4{dimensionless})*(V-E_K);
 enddef;

 def comp potassium_channel_n_gate as
 var V: millivolt {pub: in};
 var t: millisec {pub: in};
 var n: dimensionless {init: 0.325, pub: out};
 var alpha_n: per_millisec;
 var beta_n: per_millisec;

 alpha_n = 0.01{per_millivolt_millisec}*(V+10{millivolt})
 /(exp((V+10{millivolt})/10{millivolt})-1{dimensionless});
 beta_n = 0.125{per_millisec}*exp(V/80{millivolt});

 ode(n, t) = alpha_n*(1{dimensionless}-n)-beta_n*n;
 enddef;

 def map between potassium_channel and environment for
 vars V and V;
 enddef;
 def map between potassium_channel and potassium_channel_n_gate for
 vars n and n;
 enddef;

 def map between potassium_channel_n_gate and environment for
 vars V and V;
 vars t and t;
 enddef;

enddef;

14

 From here on we use a coloured background to identify code blocks that relate to a particular CellML
construct: units, components, mappings and later encapsulation groups and imports.

Define units

Define component ‘environment’

Define component ‘potassium channel’

Define component ‘potassium channel n gate’

Define mappings between
components for variables
that are shared between
these components

Define
voltage step

13

Note that one other feature has been added: the event control select case which indicates that the
voltage is specified to jump from -85mV to -20mV at t=5ms then back to -85mV at t=15ms. This is
only used here in order to test the K channel model; when the potassium_channel component is
later imported into a neuron model, the environment component is not imported.

Note also the use of * + and * + to indicate which variables are either supplied as inputs
to a component or produced as outputs from a component15. Any variables not labelled as in or out
are local variables or parameters defined and used only within that component. Public (and private)
interfaces are discussed in more detail in the next section.

We now use OpenCOR to solve the
equations for the potassium channel under
a voltage step condition in which the
membrane voltage is clamped initially at
-85mV and then stepped up to higher
voltage for 10ms before being returned to
-85mV. At a membrane voltage of -85mV,
the steady state value of the n gate is

 Three cases are

shown in Figure 15: steps to -20mV (top
set), 0mV (middle set) and +20mV (bottom
set). The voltage traces are shown at the
top of each set, the n-gate response (by
opening from its resting value and then
plateauing at the peak step voltage before
closing again as the voltage is stepped back
to rest) are shown in the middle of each set,
and the channel conductance ̅ is
shown as the bottom trace in each set. Note
that the gate closing behaviour is slower
than the opening behaviour in all cases and
that the opening behaviour is faster as the
voltage is stepped to higher values since

 reduces with increasing V

(see Figure 13).

Note that this potassium channel model will
be used later, along with a sodium channel
model and a leakage channel model, to
form the Hodgkin-Huxley neuron model,
where the membrane ion channel current
flows are coupled to the equations
governing current flow along the axon to
generate an action potential.

15

 Note that a later version of CellML will remove the terms in and out since it is now thought that the direction
of information flow should not be constrained.

𝑽(𝒕)

𝒏(𝒕)

𝒈𝑲(𝒕)

-20V

𝑽(𝒕)

𝒏(𝒕)

𝒈𝑲(𝒕)

0V

𝑽(𝒕)

𝒏(𝒕)

𝒈𝑲(𝒕)

20V

Figure 15. Transient responses to voltage steps.
See text for explanation and analysis.

14

8. A model of the sodium channel: Introducing CellML encapsulation and interfaces

The HH sodium channel has two types of gate, an gate (of which there are 3) that is initially closed
() before activating and inactivating back to the closed state, and an gate that is initially open
() before activating and inactivating back to the open state. The short period when both types
of gate are open allows a brief window current to pass through the channel. Therefore,

 ̅
 ̅ ()

where ̅ 120 mS.cm-2, and with , - = 30mM and , - = 140mM, the Nernst potential for
the sodium channel is

, -
, -

 .

The gating kinetics are described by

 () ;

 ()

where the voltage dependence of these four rate constants is determined experimentally to be

 ()

 ()

;
 ()

 ;
 ()

 ;

 ()

.16

Before we construct a CellML model of the sodium channel, we first introduce some further CellML
concepts that help deal with the complexity of biological models: first the use of encapsulation
groups and public and private interfaces to control the visibility of information in modular CellML
components. To understand encapsulation, it is useful to use the terms ‘parent’, ‘child’ and ‘sibling’.

We define the CellML components sodium_channel_m_gate
and sodium_channel_h_gate below. Each of these components
has its own equations (voltage-dependent gates and first
order gate kinetics) but they are both parts of one protein –
the sodium channel – and it is useful to group them into one
sodium_channel component as shown on the right:

We can then talk about the sodium channel as the parent of two children: the m gate and the h gate,
which are therefore siblings. A private interface allows a parent to talk to its children and a public
interface allows siblings to talk among themselves and to their parents (see Figure 16).

Figure 16. The children talk to each other as siblings, and to their parents, via public interfaces. But the outside
world can only talk to children through their parents via a private interface. Note that the siblings m_gate and
h_gate could talk via a public interface but only if a mapping is established between them (not needed here).

16

 The HH paper used
 ()

()

;

 ;

 ;

()

 (see footnote on p10).

def group as encapsulation for
 comp sodium_channel incl
 comp sodium_channel_m_gate;
 comp sodium_channel_h_gate;
 endcomp;
enddef;

Si
b

lin
gs

 c
o

m
m

u
n

ic
at

e
vi

a
p

u
b

lic
 in

te
rf

ac
e

Parents communicate with
children via private interface

Children communicate with
parents via public interface

sodium_channel

m_gate

h_gate

m: {priv: in} & {pub: out}

h: {priv: in} & {pub: out}

V, t: {priv: out} & {pub: in}

environment

V, t:
{pub: out}
{pub: in}

i_Na:
{pub: in}

{pub: out}

15

The OpenCOR CellML text for the HH sodium ion channel is given below.

def model sodium_ion_channel as

 def unit millisec as
 unit second {pref: milli};
 enddef;
 def unit per_millisec as
 unit second {pref: milli, expo: -1};
 enddef;
 def unit millivolt as
 unit volt {pref: milli};
 enddef;
 def unit per_millivolt as
 unit millivolt {expo: -1};
 enddef;
 def unit per_millivolt_millisec as
 unit per_millivolt;
 unit per_millisec;
 enddef;
 def unit microA_per_cm2 as
 unit ampere {pref: micro};
 unit metre {pref: centi, expo: -2};
 enddef;
 def unit milliS_per_cm2 as
 unit siemens {pref: milli};
 unit metre {pref: centi, expo: -2};
 enddef;

 def comp environment as
 var V: millivolt {pub: out};
 var t: millisec {pub: out};
 V = sel
 case (t > 5 {millisec}) and (t < 15 {millisec}):
 -20.0 {millivolt};
 otherwise:
 -85.0 {millivolt};
 endsel;
 enddef;

 def group as encapsulation for
 comp sodium_channel incl
 comp sodium_channel_m_gate;
 comp sodium_channel_h_gate;
 endcomp;
 enddef;

 def comp sodium_channel as
 var V: millivolt {pub: in, priv: out};
 var t: millisec {pub: in, priv: out };
 var m: dimensionless {priv: in};
 var h: dimensionless {priv: in};
 var g_Na: milliS_per_cm2 {init: 120};
 var E_Na: millivolt {init: 35};
 var i_Na: microA_per_cm2 {pub: out};

 i_Na = g_Na*pow(m, 3{dimensionless})*h*(V-E_Na);
 enddef;

 def comp sodium_channel_m_gate as
 var V: millivolt {pub: in};
 var t: millisec {pub: in};
 var alpha_m: per_millisec;
 var beta_m: per_millisec;
 var m: dimensionless {init: 0.05, pub: out};

 alpha_m = 0.1{per_millivolt_millisec}*(V+25{millivolt})
 /(exp((V+25{millivolt})/10{millivolt})-1{dimensionless});
 beta_m = 4{per_millisec}*exp(V/18{millivolt});

 ode(m, t) = alpha_m*(1{dimensionless}-m)-beta_m*m;
 enddef;

Define
voltage step

Define units

Define component
‘environment’

Define component
‘sodium channel m gate’

Define component
‘sodium channel’

Define encapsulation
of m_gate and h_gate

16

 def comp sodium_channel_h_gate as
 var V: millivolt {pub: in};
 var t: millisec {pub: in};
 var alpha_h: per_millisec;
 var beta_h: per_millisec;
 var h: dimensionless {init: 0.6, pub: out};

 alpha_h = 0.07{per_millisec}*exp(V/20{millivolt});
 beta_h = 1{per_millisec}/(exp((V+30{millivolt})/10{millivolt})+1{dimensionless});

 ode(h, t) = alpha_h*(1{dimensionless}-h)-beta_h*h;
 enddef;

 def map between sodium_channel and environment for
 vars V and V;
 vars t and t;
 enddef;
 def map between sodium_channel and sodium_channel_m_gate for
 vars V and V;
 vars t and t;
 vars m and m;
 enddef;
 def map between sodium_channel and sodium_channel_h_gate for
 vars V and V;
 vars t and t;
 vars h and h;
 enddef;

enddef;

The results of the OpenCOR computation are shown in Figure 17 with plots of (), (), (),
 () and () for voltage steps from -85mV to -20mV (top set), -85mV to 0mV (middle set) and
-85mV to 20mV (bottom set). There are several things to note:

(i) The kinetics of the m-gate are much faster than the h-gate.
(ii) The sodium channel conductance rises (activates) and then falls (inactivates) under a positive

voltage step from rest since the three m-gates turn on but the h-gate turns off and the
conductance is a product of these. Compare this with the potassium channel conductance
shown in Figure 14 which is only reduced back to zero by stepping the voltage back to its
resting value – i.e. deactivating it.

(iii) The only time current flows through the sodium channel is during the brief period when
the m-gate is rapidly opening and the much slower h-gate is beginning to close. A small
current flows during the reverse voltage step but this is at a time when the h-gate is now
firmly off so the magnitude is very small.

(iv) The large sodium current is an inward current and hence negative.

Define component
‘sodium channel h gate’

Define mappings between
components for variables that are
shared between these components

17

 Figure 17. The kinetics of the sodium channel gates. See text for discussion.

𝑽(𝒕)

𝒎(𝒕)

𝒉(𝒕)

𝒊𝑵𝒂(𝒕)

𝒈𝑵𝒂(𝒕)

𝑽(𝒕)

𝒎(𝒕)

𝒉(𝒕)

𝒊𝑵𝒂(𝒕)

𝒈𝑵𝒂(𝒕)

𝑽(𝒕)

𝒎(𝒕)

𝒉(𝒕)

𝒊𝑵𝒂(𝒕)

𝒈𝑵𝒂(𝒕)

-20V

0V

20V

18

9. A model of the nerve action potential: Introducing CellML imports

Here we describe the first (and most famous) model of nerve fibre electrophysiology based on the
membrane ion channels that we have discussed in the last two sections. This is the work by Alan
Hodgkin and Andrew Huxley in 195217 that won them (together with John Eccles) the 1963 Noble
prize in Physiology or Medicine for "their discoveries concerning the ionic mechanisms involved in
excitation and inhibition in the peripheral and central portions of the nerve cell membrane".

Cable equation
The cable equation was developed in 189018 to predict the degradation of an electrical signal passing
along the transatlantic cable. It is derived as follows:

If the voltage is raised at the left hand end of the cable (shown
by the deep red in Figure 18), a current (A) will flow that

depends on the voltage gradient, given by

 (V.m-1) and the

resistance (.m-1), Ohm’s law gives

 . But if the

cable leaks current (A.m-1) per unit length of cable, conservation of current gives

 and

therefore, substituting for ,

.

/ . There are two sources of membrane current ,

one associated with the capacitance () of the membrane,

, and one associated

with holes or channels in the membrane, . Inserting these into the RHS gives

.

/

Rearranging gives the cable equation (for constant):

where all terms represent current density (current per membrane area) and have units of .

Action potentials
The cable equation can be used to model the propagation of an
action potential along a neuron or any other excitable cell. The
‘leak’ current is associated primarily with the inward movement
of sodium ions through the membrane ‘sodium channel’, giving
the inward membrane current , and the outward movement
of potassium ions through a membrane ‘potassium channel’,
giving the outward current (see Figure 19). A further small leak current ()
associated with chloride and other ions is also included.

When the membrane potential rises
due to axial current flow, the Na
channels open and the K channels close,
such that the membrane potential
moves towards the Nernst potential for
sodium. The subsequent decline of the
Na channel conductance and the
increasing K channel conductance as
the voltage drops rapidly repolarises
the membrane to its resting potential of
-85mV (see Figure 20).

17

 Hodgkin, A.L. and Huxley, A.F. A quantitative description of membrane current and its application to
conduction and excitation in nerve. Journal of Physiology, 117, 500-544, 1952. PubMed ID: 12991237
18

 http://en.wikipedia.org/wiki/Cable_theory

Figure 18. Current flow in a leaky cable.
equation.

𝑖𝑚

𝑖𝑎 𝑉 𝑥

Figure 19. Current flow in a neuron.

𝑖𝐾 𝑖𝑁𝑎 𝑖𝐾

I(V) during upstroke

of action potential

(depolarisation)

field 𝐶(𝒙)

I(V) during repolarisation

I

V 30mV -85mV

Figure 20. Current-voltage trajectory during an action potential.

Injection of outward current pulse
pushes V to a threshold where Na channels
open to allow a large inward (-ve) current

I(V) for open K channel I(V) for open Na channel

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=12991237&query_hl=1&itool=pubmed_docsum

19

If we neglect the term (

) (the rate of change of axial current along the cable), we can obtain

the membrane potential by integrating the first order ODE,

 () .

Figure 21. A schematic cell diagram describing the current flows across the
cell bilipid membrane that are captured in the Hodgkin-Huxley model. The
membrane ion channels are a sodium (Na

+
) channel, a potassium (K

+
)

channel, and a leakage (L) channel (for chloride and other ions) through
which the currents INa, IK and IL flow, respectively.

We use this example to demonstrate the importing feature of CellML. CellML imports are used to
bring a previously defined CellML model of a component into the new model (in this case the Na and
K channel19 components defined in the previous two sections, together with a leakage ion channel
model specified below). Note that importing a component brings the children components with it
along with their connections and units, but it does not bring the siblings of that component with it.

To establish a CellML model of the HH equations we first lay out the model components with their
public and private interfaces (Figure 22).

Figure 22. Overall structure of the HH CellML model showing the encapsulation hierarchy (purple), the CellML
model imports (blue) and the other key parts (units, components & mappings) of the top level CellML model.

The HH model is the top level model. The CellML text code for the potassium_ion_channel model,
leakage_channel model and HH model are given on the next two pages (the sodium_ion_channel is
unchanged from the previous section).

19

 Note that we have updated the K channel model to include the encapsulation of the n-gate into the
potassium channel component – see p19.

Environment

Units

Imports

Groups

Mappings
V, t:
{pub: out}
{pub: in}

Membrane

Sodium
channel

h_gate

m_gate
m: {priv: in} & {pub: out}

h: {priv: in} & {pub: out}

V, t: {priv: out} & {pub: in}
Na

channel
Import

Potassium
channel

n_gate
n: {priv: in} & {pub: out}

V, t: {priv: out} & {pub: in}

K
channel

Import

Leakage
channel

L
channel

Import

En
ca

p
su

la
te

sodium_ion_channel.cellml

potassium_ion_channel.cellml

leakage_ion_channel.cellml

20

def model potassium_ion_channel as

 def unit millisec as
 unit second {pref: milli};
 enddef;
 def unit per_millisec as
 unit second {pref: milli, expo: -1};
 enddef;
 def unit millivolt as
 unit volt {pref: milli};
 enddef;
 def unit per_millivolt as
 unit millivolt {expo: -1};
 enddef;
 def unit per_millivolt_millisec as
 unit per_millivolt;
 unit per_millisec;
 enddef;
 def unit microA_per_cm2 as
 unit ampere {pref: micro};
 unit metre {pref: centi, expo: -2};
 enddef;
 def unit milliS_per_cm2 as
 unit siemens {pref: milli};
 unit metre {pref: centi, expo: -2};
 enddef;

 def comp environment as
 var V: millivolt {init: 0, pub: out};
 var t: millisec {pub: out};
 enddef;

 def group as encapsulation for
 comp potassium_channel incl
 comp potassium_channel_n_gate;
 endcomp;
 enddef;

 def comp potassium_channel as
 var V: millivolt {pub: in, priv: out};
 var t: millisec {pub: in, priv: out};
 var n: dimensionless {priv: in};
 var i_K: microA_per_cm2 {pub: out};
 var g_K: milliS_per_cm2 {init: 36};
 var E_K: millivolt {init: -85};
 i_K = g_K*pow(n, 4{dimensionless})*(V-E_K);
 enddef;

 def comp potassium_channel_n_gate as
 var V: millivolt {pub: in};
 var t: millisec {pub: in};
 var alpha_n: per_millisec;
 var beta_n: per_millisec;
 var n: dimensionless {init: 0.325, pub: out};
 alpha_n = 0.01{per_millivolt_millisec}*(V+10{millivolt})
 /(exp((V+10{millivolt})/10{millivolt})-1{dimensionless});
 beta_n = 0.125{per_millisec}*exp(V/80{millivolt});
 ode(n, t) = alpha_n*(1{dimensionless}-n)-beta_n*n;
 enddef;

 def map between potassium_channel and environment for
 vars V and V;
 vars t and t;
 enddef;
 def map between
 potassium_channel and potassium_channel_n_gate for
 vars V and V;
 vars t and t;
 vars n and n;
 enddef;

enddef;

def model leakage_ion_channel as
 def unit millisec as
 unit second {pref: milli};
 enddef;
 def unit millivolt as
 unit volt {pref: milli};
 enddef;
 def unit per_millivolt as
 unit millivolt {expo: -1};
 enddef;
 def unit microA_per_cm2 as
 unit ampere {pref: micro};
 unit metre {pref: centi, expo: -2};
 enddef;
 def unit milliS_per_cm2 as
 unit siemens {pref: milli};
 unit metre {pref: centi, expo: -2};
 enddef;

 def comp environment as
 var V: millivolt {init: 0, pub: out};
 var t: millisec {pub: out};
 enddef;

 def map between leakage_channel and environment for
 vars V and V;
 enddef;

 def comp leakage_channel as
 var V: millivolt {pub: in};
 var i_L: microA_per_cm2 {pub: out};
 var g_L: milliS_per_cm2 {init: 0.3};
 var E_L: millivolt {init: -54.4};
 i_L = g_L*(V-E_L);
 enddef;

enddef;

21

def model HH as

 def import using "sodium_ion_channel.cellml" for
 comp Na_channel using comp sodium_channel;
 enddef;
 def import using "potassium_ion_channel.cellml" for
 comp K_channel using comp potassium_channel;
 enddef;
 def import using "leakage_ion_channel.cellml" for
 comp L_channel using comp leakage_channel;
 enddef;

 def unit millisec as
 unit second {pref: milli};
 enddef;
 def unit millivolt as
 unit volt {pref: milli};
 enddef;
 def unit microA_per_cm2 as
 unit ampere {pref: micro};
 unit metre {pref: centi, expo: -2};
 enddef;
 def unit microF_per_cm2 as
 unit farad {pref: micro};
 unit metre {pref: centi, expo: -2};
 enddef;

 def group as encapsulation for
 comp membrane incl
 comp Na_channel;
 comp K_channel;
 comp L_channel;
 endcomp;
 enddef;

 def comp environment as
 var V: millivolt {init: -85, pub: out};
 var t: millisec {pub: out};
 enddef;

 def map between environment and membrane for
 vars V and V;
 vars t and t;
 enddef;
 def map between membrane and Na_channel for
 vars V and V;
 vars t and t;
 vars i_Na and i_Na;
 enddef;
 def map between membrane and K_channel for
 vars V and V;
 vars t and t;
 vars i_K and i_K;
 enddef;
 def map between membrane and L_channel for
 vars V and V;
 vars i_L and i_L;
 enddef;

 def comp membrane as
 var V: millivolt {pub: in, priv: out};
 var t: millisec {pub: in, priv: out};
 var i_Na: microA_per_cm2 {pub: out, priv: in};
 var i_K: microA_per_cm2 {pub: out, priv: in};
 var i_L: microA_per_cm2 {pub: out, priv: in};
 var Cm: microF_per_cm2 {init: 1};
 var i_Stim: microA_per_cm2;
 var i_Tot: microA_per_cm2;

 i_Stim = sel
 case (t >= 1{millisec}) and (t <= 1.2{millisec}):
 100{microA_per_cm2};
 otherwise:
 0{microA_per_cm2};
 endsel;

 i_Tot = i_Stim + i_Na + i_K + i_L;
 ode(V,t) = -i_Tot/Cm;
 enddef;

enddef;

Imports

Units

Groups

Environment component

Mappings

Membrane component

22

Note that the only units that need to be defined for this top level HH model are the ones explicitly
required for the membrane component. All the other units, required for the various imported sub-
models, are imported along with the imported components.

The results generated by the HH model are shown in Figure 23.

Figure 23. Results from OpenCOR for the Hodgkin Huxley (HH) CellML model. The top panel shows the
generated action potential. Note that the stimulus current is not really needed as the background outward
leakage current is enough to drive the membrane potential up to the threshold for sodium channel opening.

𝒊𝑵𝒂(𝒕) 𝒊𝑲(𝒕) 𝒊𝑳 𝒊𝒔𝒕𝒊𝒎

𝑽(𝒕)

𝒊𝑵𝒂(𝒕)

𝒊𝑲(𝒕)

𝒊𝒔𝒕𝒊𝒎(𝒕)

23

Important note

It is often convenient to have the sub-models – in this case the sodium_ion_channel.cellml model,
the potassium_ion_channel.cellml model and the leakage_ion_channel.cellml model - loaded into
OpenCOR at the same time as the high level model (HH.cellml), as shown in Figure 24. If you make
changes to a model in the CellML text view, you must save the file (CTRL-S) before running a new
simulation since the simulator works with the saved model. Furthermore, a change to a sub-model
will only affect the high level model which imports it if you also save the high level model (or use the
Reload option under the File menu).

Figure 24. The HH.cellml model and its three sub-models are available under separate tabs in OpenCOR.

References

1. Cuellar AA, Lloyd CM, Nielsen PF, Halstead MDB, Bullivant DP, Nickerson DP, Hunter PJ.
An overview of CellML 1.1, a biological model description language. SIMULATION: Transactions
of the Society for Modeling and Simulation, 79(12):740-747, 2003

2. Lloyd, C.M., Lawson, J.R., Hunter, P.J. and Nielsen, P.F. The CellML Model Repository.
Bioinformatics, 24, 2122-2123, 2008.

3. Cooling, M., Hunter, P. and Crampin, E.J. Modeling biological modularity with CellML. IET
Systems Biology. 2(2):73-79, 2008.

4. See http://www.cellml.org/about/publications for a more extensive list of publications on
CellML and OpenCOR.

5. Hodgkin, A.L. and Huxley, A.F. A quantitative description of membrane current and its
application to conduction and excitation in nerve. Journal of Physiology, 117, 500-544, 1952.
PubMed ID: 12991237

http://www.cellml.org/about/publications
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=12991237&query_hl=1&itool=pubmed_docsum

